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Abstract

Two classes of nonparametric tests based on extremes of the subsamples are pro-
posed for the two-sample scale problem and their asymptotic distributions are de-
rived. The tests are based on U-statistics with kernels being functions of maxima or
minima of the positive or negative observations of the subsamples of specified sizes.
The performances of the classes of tests are discussed in terms of Pitman asymp-
totic relative efficiency (ARE) and their empirical power. An example is discussed
for illustration of the application of the tests.

1. Introduction

Two-sample scale problem deals with testing equality of variabilities of two absolutely

continuous populations. Let X1, X2, · · · , Xm be a random sample of size m from F (x)

and Y1, Y2, · · · , Yn be a random sample of size n from G(x) = F
(
x
σ

)
, σ > 0. Here F (x)

and G(x) are absolutely continuous distribution functions. We consider testing

−−−−−−−−−−−−−−−−−−−−−−−−−−−−
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18 SHARADA V. BHAT & SHASHANK D. SHINDHE

H0 : σ = 1 vs H1 : σ > 1, that is H0 : F (x) = G(x) vs H1 : F (x) > G(x).

The two-sample scale problem is a fundamental problem that occurs in all walks of life.

For example, comparing variances of amounts of milk filled in cans of 500ml by two

machines [3], comparing peak levels of human plasma growth hormone in 10 relatively

coronary-prone subjects and in 11 relatively coronary-resistant subjects after infusing

the subjects with arginine hydrochloride [10], comparing variability in time to break-

down of an insulating fluid under different voltages [11] and comparing variability of

decisions made by novice and experienced inspectors on a finished product [20].

An extensive study has been done on the two-sample scale problem. Some early works

are due to Lehmann [8], Rosenbaum [15], Mood [13], Sukhatme [21, 22] and Siegel and

Tukey [16]. Duran [4] carried out a substantial review on this problem. Kusum [5]

modified the test proposed by Deshpande and Kusum [3]. Shetty and Bhat [17], Shetty

and Pandit [18], Mahajan et.al. [9] and Bhat et. al. [2] proposed outlier resistant tests

for the problem. Mehra and Rao [12], Kochar and Gupta [6] and Kossler and Narinder

Kumar [7] studied the tests based on extreme order statistics. Since such observations

contain the information about the tails of the distributions, tests based them are useful

in exploring the two-sample scale problem.

We propose two classes of tests based on extreme observations. The classes of tests

constitute U -Statistics with kernels as functions of extreme order statistics of subsamples

of size b from X-sample and of size d from Y -sample.

In section 2, we suggest two classes of tests and furnish their alternative forms in terms

of ordered ranks. Section 3 deals with their distributions. In section 4, we present their

performances in terms of ARE and empirical power. We give concluding remarks about

the proposed classes of tests along with their applications in section 5.

2. Suggested Classes of Tests

In this section, we suggest two classes of tests C1(b, d) and C2(b, d) based on extreme

order statistics of subsamples of sizes b and d and provide their alternative forms in terms

of ordered ranks assuming that there are no ties. The tests are based on two-sample

U-statistics depending on the kernels being functions of subsample extrema.
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Defining,

ϕ1(x1, x2, · · · , xb; y1, y2, · · · , yd) =


1 if 0 < x+(b) < y+(d), xi, yj > 0

or y−(1) < x−(1) < 0, xi, yj < 0,

0 Otherwise

(1)

ϕ2(x1, x2, · · · , xb; y1, y2, · · · , yd) =


1 if 0 < x+(1) < y+(1), xi, yj > 0

or y−(d) < x−(b) < 0, xi, yj < 0,

0 Otherwise

(2)

where x+(b) = Max(x+1 , · · · , x
+
b ), y+(d) = Max(y+1 , · · · , y

+
d ), x+(1) = Min(x+1 , · · · , x

+
b ),

y+(1) = Min(y+1 , · · · , y
+
d ), x−(b) = Max(x−1 , · · · ,m

−
b ), y−(d) = Max(y−1 , · · · , y

−
d ), x−(1) =

Min(x−1 , · · · , x
−
b ), y−(1) = Min(y−1 , · · · , y

−
d ), Max(·) is maximum, Min(·) is minimum,

x+i (x−i )i = 1, 2, · · · , b are positive (negative) X observations and y+j (y−j ) j = 1, 2, · · · , d
are positive (negative) Y observations, we propose

C1(b, d) =

((
m
b

)(
n
d

))−1∑
C
ϕ1(Xi1 , Xi2 , · · · , Xib ;Yj1 , Yj2 , · · · , Yjd) (3)

and

C2(b, d) =

((
m
b

)(
n
d

))−1∑
C
ϕ2(Xi1 , Xi2 , · · · , Xib ;Yj1 , Yj2 , · · · , Yjd) (4)

where C denotes sum over all possible

(
m
b

)(
n
d

)
combinations of X and Y -sample

observations.

C1(b, d) and C2(b, d) are distribution-free under H0 for all values of m,n for 1 ≤ b ≤ m,

1 ≤ d ≤ n and their large values are significant for testing H0 against H1.

Both the proposed classes of tests include Sukhatme [21] test as their particular case

for b = d = 1. Test studied by Mehra and Rao [12] and Kossler and Narinder Kumar

[7] is a particular case of C1(b, d) for b = d when the alternative hypothesis is one sided

and the distributions are having common quantile as median.

Suppose m = m+ +m− (n = n+ + n−), X+
(1) < X+

(2) < · · · < X+
m+ (Y +

(1) < Y +
(2) < · · · , <

Y +
n+) are ordered positive observations and X−(1) < X−(2) < · · · < X−

m− (Y −(1) < Y −(2) <

· · · < Y −
n−) are ordered negative observations from X(Y )-sample, R+

(i)(R
−
(i)) represents

the rank of X+
(i)(X

−
(i)) and S+

(j)(S
−
(j)) represents the rank of Y +

(j)(Y
−
(j)) in the joint rankings
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of X+
1 , · · · , X

+
m+ , Y

+
1 , · · · , Yn+, (X−1 . · · · , X

−
m− , Y

−
1 , · · · , Y

−
n−). Following Bhat [1] and

Shetty et. al. [19], the alternative expressions of C∗1 (b, d) =

(
m
b

)(
n
d

)
C1(b, d) and

C∗2 (b, d) =

(
m
b

)(
n
d

)
C2(b, d) are given in the form of ordered ranks as follows.

C∗1 (b, d) =
m+∑
i=1

d−1∑
l=0

(
i− 1
b− 1

)(
R+

(i) − i
d− l − 1

)(
n+R+

(i) + i

l + 1

)

+
n−∑
j=1

(
n− − j
d− 1

)(
m− − S−(j) + j

b

) (5)

and

C∗2 (b, d) =
m+∑
i=1

(
m+ − i
b− 1

)(
n+ −R+

(i) + i

d

)

+
n−∑
j=1

b−1∑
l=0

(
j − 1
d− 1

)(
S−(j) − j
b− l − 1

)(
m− − S−(j) + j

l + 1

) (6)

3. Distribution of C1(b, d) and C2(b, d)

In this section, we derive the null mean and asymptotic distributions of C1(b, d) and

C2(b, d). Also, we obtain the null distribution of C∗1 (b, d) and C∗2 (b, d).

The mean of C1(b, d) is given by

E[C1(b, d)] = P [0 < X(b) < Y(d)] + P [Y(1) < X(1) < 0]

= d

[∫ ∞
0

(2F (x)− 1)b(2G(x)− 1)d−12dG(x)

+

∫ 0

−∞
(1− 2F (x))b(1− 2G(x))d−12dG(x)

]
.

Under H0, the null mean of C1(b, d) is given by

µ01 = EH0 [C1(b, d)] =
2d

b+ d
. (7)

The mean of C2(b, d) is

E[C2(b, d)] = P [0 < X(1) < Y(1)] + P [Y(d) < X(b) < 0]

and under H0, the null mean of C2(b, d) is

µ02 = EH0 [C2(b, d)] =
2b

b+ d
. (8)
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When b = d, µ01 = µ02 = 1.

The asymptotic null variance of C1(b, d) is given by

σ21 =
b2(ξ10)C1

λ
+
d2(ξ01)C1

1− λ
(9)

where 0 < λ = lim
N→∞

m
N < 1, N = m+ n,

(ξ10)C1 = Cov[φ1(X1, · · · , Xb;Y1, · · · , Yd),

φ1(X1, Xb+1, · · · , X2b−1;Yd+1, · · · , Y2d]

=

∫ ∞
−∞

P 2[(0 < Max(x,X2, · · · , Xb) < Max(Y1, · · · , Yd))

+(Min(Y1, · · · , Yd) < Min(x,X2, · · · , Xb) < 0]2dF (x)− µ201

=
2d2

(b+ d− 1)2

{
b+ d− 2

b+ d
+

1

2b+ 2d− 1

}
− 2d2

(b+ d)2

=
2d2

(b+ d− 1)2

{
1

2b+ 2d− 1
− 1

(b+ d)2

}
(10)

and

(ξ01)C1 = Cov[φ1(X1, · · · , Xb;Y1, · · · , Yd),

φ1(Xb+1, · · · , X2b;Y1, Yd+1, · · · , Y2d−1]

=

∫ ∞
−∞

P 2[(0 < Max(X1, · · · , Xb) < Max(y, Y2, · · · , Yd))

+(Min(y, Y2, · · · , Yd) < Min(X1, · · · , Xb) < 0]2dF (x)− µ201

=
2b2

(b+ d− 1)2

{
1

2b+ 2d− 1
− 1

(b+ d)2

}
(11)

Since b2(ξ10)C1 = d2(ξ01)C1 , we have

σ21 =
b2(ξ10)C1

λ(1− λ)
. (12)

For b = d,

(ξ∗10)C1 =
1

2(4b− 1)
, σ∗

2

1 =
b2

2λ(1− λ)(4b− 1)
. (13)

By generalized U -statistic theorem due to Lehmann [8],
√
NC1(b, d) follows asymptotic

normal distribution with mean µ01 and variance σ21 and
√
NC1(b, b) follows asymptotic

normal distribution with unit mean and variance σ∗
2

1 .
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Proceeding on similar grounds, the asymptotic distribution of
√
NC2(b, d) has asymp-

totic normal distribution with mean µ02 = 2b
b+d and variance σ22 =

b2(ξ10)C2
λ(1−λ) , where

(ξ10)C2 = 2
(b+d−1)2

{
(b− 1)2 + d2

2b+2d−1 + 2d(b−1)
b+d

}
− 2b2

(b+d)2

= 2d2

(b+d−1)2

{
1

2b+2d−1 −
1

(b+d)2

}
.

(14)

By (10) and (14), we get, σ21 = σ22.

We observe that, the numerator of mean of C1(b, d) depends on subsample size of Y

sample whereas that of C2(b, d) depends on subsample size of X sample and both the

proposed classes of tests have equal variances.
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To obtain null distribution of C∗1 (b, d) and C∗2 (b, d), 10000 random samples are gener-

ated from uniform distribution for specified values of m,n,m+, n+, b and d. The null

distributions of the proposed classes of tests are obtained using Monte-Carlo simulation

technique. Figure 1 and figure 2 respectively exhibit the null distributions of C∗1 (b, d)

and C∗2 (b, d) for m = n,m+ = n+ and b = d.

From the figures we observe that, the null distributions of both the classes of tests are

normal for higher values of m,n,m+, n+ and for relatively smaller values of b, d. The

null distributions are skewed when b and d are relatively large.

4. Performance of C1(b, d) and C2(b, d)

In this section, we discuss about the large sample performance of C1(b, d) and C2(b, d) in

terms of Pitman ARE and their small sample performance in terms of empirical power.

The efficacies of C1(b, d) and C2(b, d) are given by

e(C1(b, d)) =

[
d
dσ [EH1(C1(b, d))]σ=1

]2
σ21

=
b2d2[I1C1 − I2C1 ]2

σ21
(15)

and

e(C2(b, d)) =

[
d
dσ [EH1(C2(b, d))]σ=1

]2
σ22

=
b2d2[I1C2 − I2C2 ]2

σ22
(16)

where

I1C1 = 4

∫ ∞
0

x(2F (x)− 1)b+d−2f2(x)dx,

I2C1 = 4

∫ 0

−∞
x(1− 2F (x))b+d−2f2(x)dx.

I1C2 = 4

∫ ∞
0

x(2F (x))b+d−2f2(x)dx and

I2C2 = 4

∫ 0

−∞
x(2F (x))b+d−2f2(x)dx.

The ARE of C1(b, d) and C2(b, d) with respect to (wrt) any other test T is given by

ARE(C1(b, d), T ) =
e(C1(b, d))

e(T )
and ARE(C2(b, d), T ) =

e(C2(b, d))

e(T )
. (17)

We compare the asymptotic performances of C1(b, d) and C2(b, d) wrt M [13], ST [16],

T1 [3], T2 [5], U1(a1, a2) [6], U2(3, k)[17] and U3(c1, c2) [2].
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The efficacy values of C1(b, d), C2(b, d) for various distributions and values of b+ d are

computed in table 1 of appendix. Since these values are equal for b+d for varying values

of b, d, we furnish the efficacy values and compute ARE for sum of the subsample sizes

s = b+d. Also we take a = a1 +a2 and c = c1 + c2. The ARE of the proposed classes of

tests wrt M,ST are given in table 2, wrt T1, T2 in table 3, wrt U1(a1, a2), U2(3, k) and

U3(c1, c2) are given respectively in tables 4, 5 and 6 in appendix. The critical values

with attained level of significance (α∗) for computing empirical powers of C∗1 (b, d) and

C∗2 (b, d) are given in table 7. And the empirical powers of C∗1 (b, d) and C∗2 (b, d) for 10%

level of significance (α = 0.10) under various distributions are respectively furnished in

table 8 and table 9.

From table 1, we observe that, the efficacies of C1(b, d) and C2(b, d) are equal for Cauchy

distribution, but efficacies of C1(b, d) are higher than those of C2(b, d) for all other

distributions under consideration. Tables 2, 4, 5 and 6 reveal that C1(b, d) outperforms

C2(b, d) wrt their large sample performances with other tests under consideration.

Table 2 shows that, C1(b, d) outperforms M and ST under uniform, normal, logistic,

Laplace distributions for all values of s and under Cauchy distribution for s ≤ 8. The

ARE of C1(b, d) wrt M and ST is increasing for increasing values of s for distributions

other than Cauchy distribution. The performance of C2(b, d) is better than M and

ST under normal distribution for smaller values of b, d, under logistic and Laplace

distribution for s < 5 and it decreases with increasing values of s.

Table 3 reveals that, under normal distribution both the proposed classes of tests outper-

form T1, T2 and the ARE values of C1(b, d) increase with increasing values of s whereas,

they decrease in case of C2(b, d). Under Laplace distribution, C1(b, d) outperforms T1, T2

and ARE values decrease as s increases. C2(b, d) performs better than T1 and T2 for

s < 4. In case of Cauchy distribution, both the proposed classes of tests are better than

T1 and T2 respectively for s ≤ 8 and s ≤ 9.

Table 4 shows that, C1(b, d) outperforms U1(a1, a2) under exponential, normal, logistic

and Laplace distributions whereas, C2(b, d) outperforms U1(a1, a2) under normal distri-

bution, under exponential distribution and logistic distribution respectively for s < 7

and s < 5. The ARE of C1(b, d) wrt U1(a1, a2) is increasing with increasing s and

decreasing for increasing values of a for a given s.

It can be seen from table 5 that, C1(b, d) outperforms U2(3, k). The ARE is increasing
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for increasing s and is decreasing for a given value of s when k increases. C2(b, d) is

better than U2(3, k) under normal distribution for all values of s and under logistic and

Laplace distribution for s ≤ 4.

Table 6 shows that, C1(b, d) outperforms U3(c1, c2) under all the distributions considered

whereas, C2(b, d) is better than U3(c1, c2) under normal distribution. The ARE of

C1(b, d) is increasing for increasing values of s and c whereas, the ARE C2(b, d) is

decreasing with increasing values of s.

With respect to small sample performance, from table 8, we find that for σ ≤ 1.2,

the empirical power of C∗1 (b, d) is higher under normal, logistic, Laplace and Cauchy

distributions than it’s empirical power under uniform distribution. For σ > 1.2, the

empirical power under normal and uniform distributions are higher. The empirical

power is higher for larger m,n,m+, n+ and smaller b, d.

We observe from table 9 that, the empirical power of C∗2 (b, d) is higher for Cauchy

distribution when compared to other distributions under consideration. The empirical

power is higher for smaller values of b, d and larger values of m,n,m+, n+.

5. Conclusion

In this section, we consider an example for illustrating the application of proposed

classes of tests.

Example: [14] Let X and Y respectively represent the times in minutes to breakdown

of an insulating fluid under elevated voltage stress of 32kV and 36kV.

X : 0.27, 0.4, 0.69, 0.79, 2.75, 3.91, 9.88, 13.95, 15.93, 27.8, 53.24, 82.85, 89.29, 100.58,

215.5.

Y : 0.35, 0.59, 0.96, 0.99, 1.69, 1.97, 2.07, 2.58, 2.71, 2.9, 3.67, 3.99, 5.35, 13.77, 25.5.

In testing for possible difference of variances among the two samples the p-values of the

proposed classes of tests are given below.

Test C1(2, 2) C1(3, 3) C1(4, 4) C2(2, 2) C2(3, 3) C2(4, 4) M F-test

p-value 0.0000 0.0001 0.0021 0.0001 0.0005 0.0016 0.0162 0.0000

Here, we observe that the p-values of both the proposed classes of tests are smaller than
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that of M -test. Also, the classes of tests have p-value almost similar to that of F -test

when the subsample sizes are small. Hence the suggested classes of tests are effective in

testing equality of variability in two populations.

We conclude that,

• The two-classes of suggested tests based on U -statistics being functions of sub-

sample extrema for two-sample scale problem are distribution-free and their large

values are significant for testing H0 vs H1.

• Both the classes of tests have equal asymptotic variances and they follow asymp-

totic normal distribution.

• The class of tests C1(b, d) outperforms C2(b, d) in terms of Pitman ARE.

• The classes of tests C1(b, d) and C2(b, d) outperform all the competitors respec-

tively for distributions under consideration and normal distribution.

• The class of tests C2(b, d) is better than M,ST for s ≤ 8, is better than T1 for

s ≤ 8 and is better than T2 for s ≤ 9 under Cauchy distribution. It is better than

U1(a1, a2) under exponential and logistic distributions respectively for s and a ≤ 6

and s ≤ 4 and a ≤ 6. Also, the class of tests is better than U2(3, k) under logistic

and Laplace distribution respectively for s ≤ 4, k ≤ 5 and s ≤ 4, 5 ≤ k ≤ 7.

• The class of tests C∗1 (b, d) has higher empirical power than C∗2 (b, d).

• Empirical power of C∗1 (b, d) is higher for light and medium tailed distributions

whereas, that of C∗2 (b, d) is higher for heavy tailed distributions.

• For smaller values of b, d both the classes of tests have similar p-value as that of

F -test and their p-values are smaller than that of Mood’s test.

• Although the asymptotic variances of C1(b, d) and C2(b, d) are equal, C1(b, d) out-

performs C2(b, d) in terms of Pitman ARE and empirical power.
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Appendix

Table 1: Efficacies of C1(b, d) and C2(b, d).

s Uniform Triangular Exponential Normal Logistic Laplace Cauchy
4 14.0000 4.2720 0.4560 53.7980 2.6660 1.8260 0.8130
5 18.0000 4.7900 0.4630 56.6310 2.7220 1.8530 0.7100
6 22.0000 5.2090 0.4630 58.1570 2.7250 1.8500 0.6230

C1(b, d) 7 26.0000 5.5570 0.4580 58.9020 2.7000 1.8320 .5520
8 30.0000 5.8540 0.4520 59.1570 2.6590 1.8070 0.4940
9 34.0000 6.1110 0.4440 59.0980 2.6110 1.7770 0.4450
10 38.0000 6.3380 0.4360 58.8320 2.5600 1.7460 0.4050
4 1.5560 1.1430 0.2190 19.2430 1.1350 0.8750 0.8130
5 1.1250 0.8890 0.1800 15.1330 0.9080 0.7200 0.7100
6 0.8800 0.7270 0.1530 12.4190 0.7530 0.6110 0.6230

C2(b, d) 7 0.7220 0.6150 0.1330 10.5050 0.6410 0.5310 0.5520
8 0.6120 0.5330 0.1170 9.0880 0.5570 0.4690 0.4940
9 0.5310 0.4710 0.1050 8.0000 0.4920 0.4200 0.4450
10 0.4690 0.4210 0.0950 7.1400 0.4400 0.3800 0.4050

Table 2: ARE of C1(b, d) and C2(b, d) wrt to M and ST .

Uniform Normal Logistic Laplace Cauchy
s M ST M ST M ST M ST M ST
4 2.800 4.667 35.398 44.249 2.860 2.546 2.102 2.444 1.764 1.651
5 3.600 6.000 37.262 46.580 2.921 2.601 2.133 2.480 1.540 1.442
6 4.400 7.334 38.267 47.835 2.924 2.603 2.130 2.477 1.352 1.266

C1(b, d) 7 5.200 8.667 38.756 48.447 2.897 2.579 2.109 2.453 1.198 1.121
8 6.000 10.001 38.925 48.657 2.854 2.540 2.080 2.418 1.071 1.003
9 6.800 11.334 38.886 48.609 2.802 2.495 2.046 2.379 0.966 0.905
10 7.600 12.668 38.711 48.390 2.747 2.446 2.009 2.337 0.878 0.822
4 0.311 0.519 12.662 15.828 1.218 1.084 1.007 1.171 1.764 1.651
5 0.225 0.375 9.958 12.447 0.974 0.867 0.829 0.964 1.540 1.442
6 0.176 0.293 8.172 10.215 0.808 0.719 0.704 0.818 1.352 1.266

C2(b, d) 7 0.144 0.241 6.912 8.640 0.688 0.612 0.611 0.710 1.198 1.121
8 0.122 0.204 5.980 7.475 0.598 0.532 0.540 0.627 1.071 1.003
9 0.106 0.177 5.264 6.580 0.528 0.470 0.483 0.562 0.966 0.905
10 0.094 0.156 4.698 5.873 0.473 0.421 0.437 0.509 0.878 0.822
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Table 3 : ARE of C1(b, d) and C2(b, d) wrt to T1 and T2.

T1 T2
s Normal Laplace Cauchy Normal Laplace Cauchy
4 44.2817 2.4322 1.6534 32.0263 1.9982 2.0012
5 46.6140 2.4684 1.4436 33.7131 2.0280 1.7473
6 47.8701 2.4650 1.2675 34.6216 2.0252 1.5342

C1(, d) 7 48.4828 2.4412 1.1228 35.0647 2.0057 1.3590
8 48.6932 2.4071 1.0039 35.2169 1.9777 1.2151
9 48.6446 2.3676 0.9057 35.1817 1.9452 1.0962
10 48.4258 2.3256 0.8233 35.0235 1.9107 0.9966
4 15.8393 1.1657 1.6534 11.4556 0.9577 2.0012
5 12.4565 0.9592 1.4436 9.0090 0.7881 1.7473
6 10.2222 0.8141 1.2675 7.3931 0.6689 1.5342

C2(b, d) 7 8.6467 0.7069 1.1228 6.2537 0.5808 1.3590
8 7.4806 0.6244 1.0039 5.4103 0.5130 1.2151
9 6.5851 0.5593 0.9057 4.7626 0.4595 1.0962
10 5.8769 0.5063 0.8233 4.2504 0.4159 0.9966

Table 4 : ARE of C1(b, d) and C2(b, d) wrt U1(a1, a2)

Exponential Normal Logistic Laplace
s a C1(b, d) C2(b, d) C1(b, d) C2(b, d) C1(b, d) C2(b, d) C1(b, d) C2(b, d)
4 5 3.1939 1.5308 34.3569 12.2893 2.8018 1.1931 1.6184 0.7757

6 3.0859 1.4790 33.1286 11.8500 2.7353 1.1648 1.3997 0.6709
5 5 3.2414 1.2596 36.1665 9.6647 2.8614 0.9541 1.6426 0.6383

6 3.1319 1.2170 34.8735 9.3192 2.7935 0.9315 1.4206 0.5520
6 5 3.2369 1.0691 37.1411 7.9312 2.8642 0.7911 1.6402 0.5418

6 3.1274 1.0330 35.8133 7.6476 2.7962 0.7724 1.4186 0.4685
7 5 3.2058 0.9283 37.6164 6.7087 2.8375 0.6738 1.6245 0.4704

6 3.0974 0.8692 36.2716 6.4689 2.7702 0.6578 1.4049 0.4068
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Table 5 : ARE of C1(b, d) and C2(b, d) wrt U2(3, k)

C1, (b, d) C2, (b, d)
s k Uniform Normal Logistic Laplace Uniform Normal Logistic Laplace

2 5.9998 45.3240 2.5720 1.2244 0.6668 16.2119 1.0950 0.5867
5 5.0976 42.0380 2.4203 2.2594 0.5666 15.0366 1.0304 1.0827

4 7 4.1408 38.4708 2.2618 2.2133 0.4602 13.7606 0.9629 1.0606
2 7.7141 47.7107 2.6260 1.2425 0.4821 12.7493 0.8760 0.4828
5 6.5540 44.2517 2.4712 2.2928 0.4096 11.8250 0.8243 0.8909

5 7 5.3239 40.4967 2.3093 2.2460 0.3327 10.8216 0.7703 0.8727
2 9.4283 48.9963 2.6289 1.2405 0.3771 10.4628 0.7264 0.4097
5 8.0105 45.4441 2.4739 2.2891 0.3204 9.7043 0.6836 0.7560

6 7 6.5070 41.5879 2.3118 2.2424 0.2603 8.8808 0.6388 0.7406
2 11.1425 49.6240 2.6048 1.2284 0.3094 8.8503 0.6184 0.3560
5 9.4669 46.0263 2.4512 2.2668 0.2629 8.2087 0.5819 0.6570
7 7.6900 42.1207 2.2906 2.2206 0.2135 7.5121 0.5438 0.6436
2 12.8568 49.8388 2.5652 1.2116 0.2623 7.6565 0.5374 0.3145
5 10.9234 46.2255 2.4140 2.2359 0.2228 7.1014 0.5057 0.5803

8 7 8.8731 42.3030 2.2558 2.1903 0.1810 6.4988 0.4725 0.5685
2 14.5710 49.7891 2.5189 1.1915 0.2276 6.7399 0.4746 0.2816
5 12.3798 46.1794 2.3704 2.1988 0.1933 6.2512 0.4467 0.5197

9 7 10.0562 42.2608 2.2151 2.1539 0.1571 5.7208 0.4174 0.5091
2 16.2852 49.5650 2.4697 1.1707 0.2010 6.0153 0.4245 0.2548
5 13.8363 45.9716 2.3241 2.1604 0.1708 5.5792 0.3995 0.4702

10 7 11.2393 42.0706 2.1718 2.1163 0.1387 5.1058 0.3733 0.4606
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Table 6 : ARE of C1(b, d) and C2(b, d) wrt U3(c1, c2)

s c Uniform Triangular Exponential Normal Logistic Laplace Cauchy
C1(b, d) 6 3.9697 2.0401 1.3600 25.5104 1.4139 1.3615 0.8150

4 8 4.3349 2.1478 1.4027 26.4634 1.4566 1.4043 0.8199
10 4.5940 2.2270 1.4359 27.1904 1.4899 1.4374 0.8254
6 5.1039 2.2874 1.3809 26.8538 1.4436 1.3817 0.7118

5 8 5.5734 2.4082 1.4243 27.8570 1.4872 1.4250 0.7160
10 5.9065 2.4970 1.4579 28.6222 1.5212 1.4587 0.7208
6 6.2381 2.4875 1.3809 27.5774 1.4452 1.3794 0.6246

6 8 6.8120 2.6189 1.4243 28.6076 1.4888 1.4227 0.6283
10 7.2191 2.7154 1.4579 29.3935 1.5229 1.4563 0.6325
6 7.3723 2.6537 1.3660 27.9307 1.4319 1.3660 0.5534

7 8 8.0505 2.7939 1.4089 28.9741 1.4752 1.4089 0.5567
10 8.5317 2.8968 1.4422 29.7700 1.5089 1.4422 0.5604
6 8.5065 2.7955 1.3481 28.0516 1.4102 1.3474 0.4952

8 8 9.2890 2.9432 1.3904 29.0995 1.4528 1.3897 0.4982
10 9.8442 3.0517 1.4233 29.8989 1.4860 1.4225 0.5015
6 9.6407 2.9183 1.3243 28.0236 1.3847 1.3250 0.4461

9 8 10.5276 3.0724 1.3658 29.0705 1.4265 1.3666 0.4488
10 11.1568 3.1856 1.3981 29.8691 1.4592 1.3989 0.4518
6 10.7749 3.0267 1.3004 27.8975 1.3577 1.3019 0.4060

10 8 11.7661 3.1865 1.3412 28.9397 1.3987 1.3428 0.4084
10 12.4694 3.3040 1.3729 29.7347 1.4307 1.3745 0.4112
6 0.4412 0.5458 0.6532 9.1248 0.6019 0.6524 0.8150

C2(b, d) 4 8 0.4818 0.5747 0.6737 9.4657 0.6201 0.6729 0.8199
10 0.5106 0.5958 0.6896 9.7257 0.6343 0.6888 0.8254
6 0.3190 0.4245 0.5369 7.1759 0.4815 0.5369 0.7118

5 8 0.3483 0.4470 0.5537 7.4440 0.4961 0.5537 0.7160
10 0.3692 0.4634 0.5668 7.6485 0.5074 0.5668 0.7208
6 0.2495 0.3472 0.4563 5.8890 0.3993 0.4556 0.6246

6 8 0.2725 0.3655 0.4707 6.1090 0.4114 0.4699 0.6283
10 0.2888 0.3790 0.4818 6.2768 0.4208 0.4810 0.6325
6 0.2047 0.2937 0.3967 4.9814 0.3399 0.3959 0.5534

7 8 0.2236 0.3092 0.4091 5.1674 0.3502 0.4084 0.5567
10 0.2369 0.3206 0.4188 5.3094 0.3582 0.4180 0.5604
6 0.1735 0.2545 0.3490 4.3094 0.2954 0.3497 0.4952

8 8 0.1895 0.2680 0.3599 4.4704 0.3043 0.3607 0.4982
10 0.2008 0.2779 0.3684 4.5932 0.3113 0.3692 0.5015
6 0.1506 0.2249 0.3132 3.7935 0.2609 0.3132 0.4461

9 8 0.1644 0.2368 0.3230 3.9352 0.2688 0.3230 0.4488
10 0.1742 0.2455 0.3306 4.0433 0.2750 0.3306 0.4518
6 0.1330 0.2010 0.2833 3.3857 0.2333 0.2833 0.4060

10 8 0.1452 0.2117 0.2922 3.5122 0.2404 0.2922 0.4084
10 0.1539 0.2195 0.2991 3.6087 0.2459 0.2991 0.4112
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Table 7 : Critical values and α∗ for C∗1 (b, d) and C∗2 (b, d) for different values

of m,n,m+, n+, b and d

Critical Values (α∗)
m n m+ n+ b d C∗

1 (b, d) C∗
2 (b, d) C∗

1 (b, d) C∗
2 (b, d)

30 31 27 39
6 6 2 2 2 2 (0.0414) (0.0385) (0.0892) (0.0985)

14 15 12 12
6 6 3 3 2 2 (0.0474) (0.0152) (0.0913) (0.0911)

5 5 4
6 6 3 3 3 2 - (0.0376) (0.0961) (0.0801)
7 6 4 3 3 3 4 4

(0.0284) - - (0.0802)
7 9 4 4 3 3 25 19 22 16

(0.0468) (0.0322) (0.0957) (0.0874
8 8 2 2 2 2 163 165 147 147

(0.0470) (0.0477) (0.0970) (0.0989)
8 8 3 3 3 3 73 93 65 90

(0.0499) (0.0482) (0.0963) (0.0643)
8 8 4 4 2 2 50 51 45 46

(0.0480) (0.0425) (0.0946) (0.0933)
8 8 4 4 2 3 34 41 30 38

(0.0477) (0.0484) (0.0941) (0.0772)
8 8 4 4 3 2 41 34 37 30

(0.0451) (0.0455) (0.0979) (0.0887)
10 5 5 2 2 130 132 118 120

(0.0484) (0.0469) (0.0984) (0.0963)
10 10 5 5 2 3 131 155 118 120

(0.0486) (0.0485) (0.0980) (0.0962)
10 10 5 5 3 2 155 130 140 118

(0.0485) (0.0478) (0.0946) 0.0958)
10 10 5 5 2 4 70 115 61 101

(0.0456) (0.0464) (0.0966) (0.0993)
10 10 5 5 3 4 70 85 60 75

(0.0380) (0.0416) (0.0930) (0.0971)
10 10 5 5 4 4 40 40 31 31

(0.0290) (0.0298) (0.0977) (0.0986)
16 16 8 8 2 2 912 906 848 841

(0.0499) (0.0949) (0.0995) (0.0996)
16 16 8 8 3 3 3817 3821 3463 3462

(0.0499) (0.0499) (0.0996) (0.0997)
16 16 8 8 4 4 6154 6‘99 5515 5545

(0.0499) (0.0499) (0.0998) (0.0997)
16 16 8 8 5 5 4121 4235 3611 3675

(0.0498) (0.0498) (0.0999) (0.0999)
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Table 8 : Empirical power of C∗1 (b, d) for different values of m,n,m+, n+, b, d

and various distributions for α = 0.10

m n m+ n+ b d Distributions σ
1.2 1.5 2 2.5 3 4 5

Uniform 0.111 0.208 0.276 0.324 0.345 0.398 0.416
Normal 0.153 0.220 0.305 0.363 0.411 0.458 0.489

6 6 2 2 2 2 Logistic 0.150 0.210 0.291 0.349 0.392 0.449 0.470
Laplace 0.138 0.193 0.256 0.306 0.341 0.404 0.437
Cauchy 0.129 0.159 0.204 0.229 0.267 0.311 0.344
Uniform 0.171 0.267 0.310 0.337 0.346 0.374 0.368
Normal 0.216 0.255 0.310 0.342 0.359 0.375 0.375

6 6 3 3 2 2 Logistic 0.208 0.243 0.293 0.327 0.339 0.352 0.361
Laplace 0.196 0.230 0.273 0.317 0.315 0.340 0.339
Cauchy 0.180 0.204 0.224 0.242 0.254 0.268 0.275
Uniform 0.120 0.214 0.281 0.317 0.333 0.373 0.390
Normal 0.163 0.211 0.280 0.325 0.354 0.381 0.388

8 8 4 4 2 2 Logistic 0.160 0.199 0.269 0.304 0.328 0.359 0.371
Laplace 0.158 0.190 0.245 0.282 0.301 0.337 0.358
Cauchy 0.128 0.162 0.183 0.207 0.218 0.235 0.247
Uniform 0.097 0.245 0.366 0.434 0.481 0.553 0.582
Normal 0.162 0.261 0.393 0.475 0.534 0.592 0.612

16 16 8 8 2 2 Logistic 0.158 0.236 0.350 0.439 0.487 0.551 0.582
Laplace 0.142 0.208 0.292 0.362 0.428 0.501 0.533
Cauchy 0.119 0.159 0.195 0.239 0.266 0.307 0.338
Uniform 0.099 0.234 0.302 0.338 0.349 0.380 0.370
Normal 0.152 0.213 0.282 0.310 0.326 0.319 0.305

16 16 8 8 3 3 Logistic 0.140 0.193 0.246 0.281 0.299 0.310 0.299
Laplace 0.134 0.175 0.223 0.257 0.281 0.292 0.291
Cauchy 0.115 0.127 0.144 0.151 0.164 0.181 0.183
Uniform 0.104 0.199 0.221 0.221 0.213 0.208 0.195
Normal 0.134 0.159 0.180 0.185 0.175 0.154 0.142

16 16 8 8 5 5 Logistic 0.121 0.155 0.169 0.167 0.167 0.153 0.143
Laplace 0.118 0.139 0.160 0.169 0.168 0.162 0.148
Cauchy 0.107 0.113 0.114 0.123 0.108 0.114 0.111
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Table 9: Empirical power of C∗2 (b, d) for different values of m,n,m+, n+, b, d

and various distributions for α = 0.10

m n m+ n+ b d Distributions σ
1.2 1.5 2 2.5 3 4 5

Uniform 0.103 0.078 0.061 0.059 0.057 0.052 0.048
Normal 0.9200 0.088 0.072 0.066 0.063 0.065 0.061

6 6 2 2 2 2 Logistic 0.098 0.089 0.077 0.074 0.073 0.067 0.065
Laplace .101 0.095 0.085 0.086 0.075 0.074 0.070
Cauchy 0.103 0.111 0.104 0.107 0.115 0.113 0.106
Uniform 0.174 0.179 0.172 0.173 0.176 0.179 0.191
Normal 0.178 0.187 0.203 0.210 0.224 0.233 0.255

6 6 3 3 2 2 Logistic 0.183 0.196 0.196 0.211 0.232 0.237 0.250
Laplace 0.187 0.193 0.200 0.219 0.224 0.237 0.247
Cauchy 0.1920 0.206 0.228 0.237 0.251 0.266 0.286
Uniform 0.097 0.098 0.094 0.102 0.107 0.118 0.120
Normal 0.105 0.118 0.130 0.138 0.155 0.172 0.188

8 8 4 4 2 2 Logistic 0.108 0.120 0.138 0.155 0.154 0.181 0.193
Laplace 0.107 0.120 0.137 0.146 0.162 0.175 0.183
Cauchy 0.111 0.131 0.152 0.171 0.184 0.205 0.217
Uniform 0.106 0.107 0.115 0.127 0.125 0.137 0.158
Normal 0.124 0.140 0.168 0.198 0.223 0.270 0.300

16 16 8 8 2 2 Logistic 0.119 0.149 0.177 0.205 0.239 0.271 0.308
Laplace 0.123 0.149 0.183 0.197 0.219 0.261 0.292
Cauchy 0.135 0.162 0.209 0.246 0.277 0.317 0.366
Uniform 0.099 0.097 0.087 0.082 0.086 0.083 0.083
Normal 0.108 0.108 0.104 0.106 0.108 0.116 0.112

16 16 8 8 3 3 Logistic 0.110 0.113 0.120 0.113 0.121 0.118 0.119
Laplace 0.104 0.119 0.126 0.124 0.130 0.140 0.133
Cauchy 0.111 0.124 0.145 0.154 0.173 0.181 0.183
Uniform 0.099 0.093 0.087 0.079 0.081 0.072 0.069
Normal 0.092 0.093 0.088 0.081 0.078 0.073 0.064

16 16 8 8 5 5 Logistic 0.096 0.096 0.091 0.090 0.082 0.076 0.073
Laplace 0.093 0.104 0.100 0.093 0.094 0.095 0.083
Cauchy 0.097 0.106 0.115 0.110 0.113 0.109 0.105
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